Storage and Data Management

Richard P Mount Michelle Butler Mike Hildreth
SLAC NCSA Notre Dame

’I ‘ h NATIONAL

ACCELERATOR

qhﬂ» LABORATORY
CpF15 Storage and Dagta MaNagement Richard P Mount  July 31, 2013




Outline

o1 AR

T AN

Input from the Science Frontiers

Technology Outlook (Michelle Butler)

Data/Software/Physics Preservation (Mike Hildreth)

HEP Outlook

CpF15 Storage and Data Management Richard P Mount  July 31, 2013



Input from the Science Frontiers
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Input from the Science Frontiers (1)
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 Input from Energy Frontier

* Affordable offline computing (for which storage is the

largest cost) does and will largely determined the trigger
rate to persistent storage. [pp experiments]

* Tape is probably underused — current insistence is that all
raw data passing the high-level triggers are “golden”

* Distributed data management is a major continuing
development activity and major operational activity.
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Input from the Science Frontiers (2)
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 Input from Intensity Frontier
* Storage capacity is not currently a major issue.

* Storage capacity/performance and data management, was
a major cost for BaBar — in its day HEP’s most data-
iIntensive experiment.

* Expect that storage capacity/performance and data
management will be an issue for Belle-Il and future
“factory” experiments.

* Data management software will be a significant need for
some |F experiments (e.g. CTA).
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Input from the Science Frontiers (3)
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* Input from Cosmic Frontier

* 1 PB total today

* 50 PB total by 2025

* 400 PB/yearin 10 — 20 years (SKA)

* “Can easily generate many PB from simulations, but no place to
store them or analyze them”

* Input from Accelerator Science

* Data volume cannot compare with HEP experiments

* But data rates (remote simulation on supercomputer moved to
local analysis facility for “control room feedback”) can exceed

those of HEP experiments.

CpF15 Storage and Data Management Richard P Mount  July 31, 2013



Storage and Data Management — Other Requirements
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« Large and costly experiments require international
collaboration

* Resources (storage, CPU) must be geographically
distributed
° Need funding from many nations
* Need access to shared computing resources
* Need access to opportunistic computing resources
* Need access to (and development of) distributed expertise
« Wide area networks, distributed storage, distributed CPU,

distributed data management and distributed workflow
management are all essential.
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ATLAS Production and Analysis
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ATLAS Data Distribution
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ATLAS Distributed Computing 2014
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Any Data Anywhere Anytime — Remote Access without Borders
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Summary of Input
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* Energy Frontier, and some Cosmic Frontier and Intensity
Frontier experiments need as much storage, data access
and computing as they can get (at tolerable cost).

* For these cases “requirements” have little meaning — the
role of storage is determined by including it (usually
implicitly) in an optimization of all major aspects of the
experiment to maximize science/$.

 Distributed data management software is one of the
major (costly) aspects of an experiment that can have a
huge impact on the experiment’s effectiveness.
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Technology Outlook
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The Past: Exponential growth of CPU, Storage, Networks
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Storage Futures
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Storage futures
* Disk and tape current technologies

— Disk is always trying to stomp out tape

— Tape continues to hang in
* Due to sheer size of data continues to grow
* Power and cooling now come into play

* Archives such as the BlueWaters machine at 380PB in 5
years is more economical to provide on tape with RAIT to
protect for disaster recovery (DR)

e Has a very bright future at performance and data doubling
for many years out (10 years at least)

* Every 18 months was new drive/technology, but now
without much competition it’s every 3 years

CpF15 Storage and Data Management Richard P Mount  July 31, 2013



Storage Futures (2)

* Disk has had a very good run

— SATA (or nearline NL) disks

* At 7200RPM at current 4TB drives have just in the last 3 years
gone from 1TB, 2TB, 3TB, now 4TB.

* Slowing down, not able to get many more large jumps in TB.

e Can be cheap at the BestBuy level, or a little more for
enterprize class drives. Still fail often and need RAID6 type
protection.

— SAS drives —

e At 10K and 15K RPM with 2.5 and 3.5” drives

* At 600GB to 900GB drives now. These are blazing fast, but

are expensive. Less likely to fail and can go with a RAID 5, but
most use cases are for DB or something with small I/0
requirements due to the cost.
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Storage Futures (3)

Disk capacities are slowing down due to fast
approaching the physical limits of the magnetic
materials.

The technology requires changing, but what will stick
in the commodity market is unsure.

What will be cheap enough for commodity storage in
the next 5 years beyond the 4TB maybe 6TB disk drive
is not something that can be seen at this time.

Solid state and memory type devices are in production,
but none are really large enough to hold PB of storage

— Still require large amounts of disk storage behind with
data movement/management schemes to move data from
fast expensive technologies to slower cheaper media.
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Middleware

* Globus Online for data movement which is an
enhanced gridftp interactive application with retry
and notification.

* GO storage is using FTP storage systems set up
around the country and a seamless storage fabric

can be used by users.

* File systems “managed” in the next year Lustre and
GPFS (now)

— Inode stays in the file system while data can be “moved”
to offsite FTP archive based on policy. As data
requested it will be moved back to online disk system.
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Disks — from Per Brashers/DDN
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* The area of a “bit” in current products is close to the limit
where what is written will remain magnetically stable.

* New technologies to make the “bits” more stable are on
the horizon:

e “Shingled Recording” ~ .
Not easily re-writable Disk Platter

* Heat Assisted Magnetic Recording (HAMR)

* [Laid-out-in-advance] Bit Patterned Recording

* None of these looks good for the near future.
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Worldwide Data Management
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° There are no commercial or widely used open source
offerings meeting HEP needs at this time. This is, in
part, due to the requirement for the highly efficient

integration of tens to hundreds of autonomous computer
centers.

* Other scientific fields have increasingly similar needs.

* Our current approaches are almost too labor intensive
even for 3000-physicist collaborations.

* Operational cost must be greatly reduced.
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Data/Software/Physics Preservation
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Overview: DASHOS

« “Data Preservation” isn’t just about data...

— keeping the data on disk/tape, migrating it to future storage media, etc.,
is the easy part

» “solved” problem

— re-processing the data to reproduce an old analysis or to produce new
results is much harder

« Common Issue:
— mentioned by essentially every group here with large projected datasets
* here, moderate differences in use cases
— common to many other fields
 although, use cases vary dramatically

« Energy Frontier experiments are leaders in this effort

— we have the resources to work with other areas to provide common
solutions to some of these problems

— These efforts should be coordinated to maximize impact, minimize effort

prucp
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Motivations DAS{IOS

« “Self Preservation” is probably the most important

— decade- or decades-long experiments will need to be able to look back
at their own data. Even looking back two or three years can be very
difficult without proper planning

— solving this problem gets one most of the way to a “knowledge
preservation” infrastructure

« documentation, software, and the ability to run executables must
be maintained

e “Outreach’

— Inspire supplementary data, tools like Rivet, HEPDB, etc., constitute
one set of “knowledge preservation” tools

» “outreach” to theorists, colleagues

— datasets, and the associated instructions for true outreach to non-
specialists can also serve as vehicles for knowledge preservation

 Mandates
— could be coming from funding agencies — should be prepared!
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(Some) Current Efforts Dé$®b$

 Rising tide of interdisciplinary interest/need for infrastructure

* Many individual archives in Astrophysics
— currently “small” on the scale of Pb
« DPHEP and associated work
— DESY self-validating software archive
— ‘“global” discussion of needs/efforts
« focus on common solutions
« DASPOS

— “US”-based effort to understand needs and build some common
infrastructure (metadata, databases, etc.) for broad use

* Research Data Alliance
— Global discussion of data/software/knowledge preservation problems

* more...
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(Preliminary) Conclusions DQ:SQOS

« Primary recommendations of report:

— “Knowledge Preservation” is a pressing problem for many experiments,
especially those with long time scales

— Frontiers should communicate needs so that possibilities for common
solutions can be evaluated

* (already ongoing with DPHEP/DASPOS efforts)

— Common solutions can and should be developed

— More resources are needed to realize system-wide infrastructure
 especially if mandates from funding agencies are forthcoming
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HEP Outlook
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Impact of Disk Technology Evolution
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« The marked slowdown in disk-capacity-per-unit price
evolution will reduce the benefits of retiring older
equipment that is still working well.

* This argues for buying well-engineered disk storage and
keeping it for as much as 8 years.

* As a result there will be additional pressure on space,
power and cooling.

* This will also be true for non-HEP applications so there is
some hope that market forces will drive the availability of
well-engineered, dense low-power hardware.

CpF15 Storage and Data Management Richard P Mount  July 31, 2013



Solid-State Storage

* Not necessarily Solid State Disks

* Will play an increasingly important role in hiding the
abysmal sparse/random access performance of rotating
disks.

«  Will slowly become more affordable with respect to
rotating disks (but will not kill disks).
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Tape

« The death of tape will recede further into the future.

* Will be cheaper than rotating disk storage by about the
same factor as now.

* Has properties (price, error rates, failure modes) that will
continue to meet needs in HEP and the commercial
marketplace.

CpF15 Storage and Data Management Richard P Mount  July 31, 2013

o1 AR
Fhm AN

31



Solid-State/Disk/Tape Data Management
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« The management of data flow within this optimized

hierarchy will probably require HEP-specific software
development.

« Generic automated cache-management software is
unlikely to be sufficiently application aware.
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Overall Optimization of Computing
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« HEP should be prepared for significant shifts in the
relative unit costs of storage (all levels), CPU and

networking, leading to new optimizations that are likely to
require significant advance effort on software.

* One of the most important optimizations is allowing
derived datasets to be instantiated or virtual:

* Without any need to change how physicists interact with
the data management system.

* This has the major additional benefit of requiring fully
automated capture and use of provenance information.
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